Knowledge distillation is often used to transfer knowledge from a strong teacher model to a relatively weak student model. Traditional knowledge distillation methods include response-based methods and feature-based methods. Response-based methods are used the most widely but suffer from lower upper limit of model performance, while feature-based methods have constraints on the vocabularies and tokenizers. In this paper, we propose a tokenizer-free method liberal feature-based distillation (LEAD). LEAD aligns the distribution between teacher model and student model, which is effective, extendable, portable and has no requirements on vocabularies, tokenizer, or model architecture. Extensive experiments show the effectiveness of LEAD on several widely-used benchmarks, including MS MARCO Passage, TREC Passage 19, TREC Passage 20, MS MARCO Document, TREC Document 19 and TREC Document 20.
translated by 谷歌翻译
激活函数是元素的数学函数,在深神经网络(DNN)中起着至关重要的作用。已经提出了许多新颖和复杂的激活功能来提高DNN的准确性,但在训练过程中还可以通过反向传播消耗大量记忆。在这项研究中,我们提出了嵌套的正向自动分化(正向AD),专门针对用于记忆效率的DNN训练的元素激活函数。我们在两个广泛使用的深度学习框架(Tensorflow和Pytorch)中部署了嵌套的AD,分别支持静态和动态计算图。我们的评估表明,在相同的记忆降低率下,嵌套的前AD嵌套将记忆足迹降低到1.97倍,比基线模型降低了20%。
translated by 谷歌翻译
量化是一种降低DNN模型的计算和记忆成本的技术,DNN模型越来越大。现有的量化解决方案使用固定点整数或浮点类类型,这些量子的好处有限,因为两者都需要更多位以保持原始型号的准确性。另一方面,可变长度量化使用低位量化对正常值和高精度的分数对异常值的一部分。即使这项工作带来了算法的好处,但由于长度的编码和解码,它也引入了重要的硬件开销。在这项工作中,我们提出了一种称为ANT的固定长度自适应数值数据类型,以通过微小的硬件开销实现低位量化。我们的数据类型ANT利用了两项关键创新来利用DNN模型中的张贴内和调整的自适应机会。首先,我们提出了一种特定的数据类型Flint,该数据类型结合了Float和INT的优势,以适应张量中不同值的重要性。其次,我们提出了一个自适应框架,该框架根据其分布特性选择每个张量的最佳类型。我们为蚂蚁设计了统一的处理元件体系结构,并显示其与现有DNN加速器的易于集成。我们的设计导致2.8 $ \ times $速度和2.5 $ \ times $ $ $ $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $比最先进的量化加速器提高了能源效率。
translated by 谷歌翻译
联合学习(FL)在中央服务器的帮助下支持多个客户的全球机器学习模型的分布式培训。每个客户端持有的本地数据集从未在FL中交换,因此保护本地数据集隐私受到保护。尽管FL越来越流行,但不同客户的数据异质性导致客户模型漂移问题,并导致模型性能降级和模型公平不佳。为了解决这个问题,我们在本文中使用全球本地知识融合(FEDKF)计划设计联合学习。 FEDKF中的关键思想是让服务器返回每个训练回合中的全局知识,以与本地知识融合,以便可以将本地模型正规化为全球最佳选择。因此,可以缓解客户模型漂移问题。在FEDKF中,我们首先提出了支持精确的全球知识表示形式的主动模型聚合技术。然后,我们提出了一种无数据的知识蒸馏(KD)方法,以促进KD从全局模型到本地模型,而本地模型仍然可以同时学习本地知识(嵌入本地数据集中),从而实现了全局 - 本地知识融合过程。理论分析和密集实验表明,FEDKF同时实现高模型性能,高公平性和隐私性。纸质审查后,项目源代码将在GitHub上发布。
translated by 谷歌翻译
终身学习旨在学习一系列任务,而无需忘记先前获得的知识。但是,由于隐私或版权原因,涉及的培训数据可能不是终身合法的。例如,在实际情况下,模型所有者可能希望不时启用或禁用特定任务或特定样本的知识。不幸的是,这种灵活的对知识转移的灵活控制在以前的增量或减少学习方法中,即使在问题设定的水平上也被忽略了。在本文中,我们探索了一种新颖的学习方案,称为学习,可回收遗忘(LIRF),该方案明确处理任务或特定于样本的知识去除和恢复。具体而言,LIRF带来了两个创新的方案,即知识存款和撤回,这使用户指定的知识从预先训练的网络中隔离开来,并在必要时将其注入。在知识存款过程中,从目标网络中提取了指定的知识并存储在存款模块中,同时保留了目标网络的不敏感或一般知识,并进一步增强。在知识提取期间,将带走知识添加回目标网络。存款和提取过程仅需在删除数据上对几个时期进行填充时期,从而确保数据和时间效率。我们在几个数据集上进行实验,并证明所提出的LIRF策略具有令人振奋的概括能力。
translated by 谷歌翻译
在本文中,我们探讨了一项新颖而雄心勃勃的知识转移任务,称为知识分解〜(KF)。 KF的核心思想在于知识的模块化和组装性:鉴于验证的网络模型作为输入,KF旨在将其分解为多个因素网络,每个网络仅处理专用任务,并从源中维护特定于任务的知识,并从源网络。此类因素网络是由任务分开的,可以直接组装,而无需进行任何微调,以产生更有能力的组合任务网络。换句话说,因子网络用作像乐高积木一样的构建块,使我们能够以插件的方式构建自定义网络。具体而言,每个因素网络都包含两个模块,这是一个通用知识模块,该模块是任务无关并由所有因素网络共享的模块,以及一个专门针对因子网络本身的任务特定模块。我们介绍了一个信息理论目标,即Infomax-Bottleneck〜(IMB),以通过优化学习表示和输入之间的相互信息来执行KF。各种基准的实验表明,派生因子网络不仅在专用任务,而且还可以分离,同时享有更好的解释性和模块化。此外,学到的公共知识表示会为转移学习带来令人印象深刻的结果。
translated by 谷歌翻译
较轻,更快的型号对于在资源有限设备(例如智能手机和可穿戴设备)上部署视频超分辨率(VSR)至关重要。在本文中,我们开发了残留的稀疏连接学习(RSCL),这是一种结构化的修剪方案,以减少卷积内核的冗余,并获得较小的性能下降的紧凑型VSR网络。但是,残留的块要求将跳过的修剪过滤器索引和残留连接相同,这对于修剪很棘手。因此,为了减轻剩余块的修剪限制,我们通过保留特征通道并仅在重要的通道上运行来设计残留的稀疏连接(RSC)方案。此外,对于Pixel-Shuffle操作,我们通过将几个过滤器分组为修剪单元来设计一种特殊的修剪方案,以确保修剪后功能通道空间转换的准确性。此外,我们引入了时间登录(TF),以减少具有时间传播的隐藏状态的修剪误差放大。广泛的实验表明,提出的RSCL在定量和质量上明显优于最新方法。代码和模型将发布。
translated by 谷歌翻译
在临床医学中,磁共振成像(MRI)是诊断,分类,预后和治疗计划中最重要的工具之一。然而,MRI遭受了固有的慢数据采集过程,因为数据在k空间中顺序收集。近年来,大多数MRI重建方法在文献中侧重于整体图像重建而不是增强边缘信息。这项工作通过详细说明了对边缘信息的提高来阐述了这一趋势。具体地,我们通过结合多视图信息介绍一种用于快速多通道MRI重建的新型并行成像耦合双鉴别器生成的对抗网络(PIDD-GaN)。双判别设计旨在改善MRI重建中的边缘信息。一个鉴别器用于整体图像重建,而另一个鉴别器是负责增强边缘信息的负责。为发电机提出了一种具有本地和全局剩余学习的改进的U-Net。频率通道注意块(FCA块)嵌入在发电机中以结合注意力机制。引入内容损耗以培训发电机以获得更好的重建质量。我们对Calgary-Campinas公共大脑MR DataSet进行了全面的实验,并将我们的方法与最先进的MRI重建方法进行了比较。在MICCAI13数据集上进行了对剩余学习的消融研究,以验证所提出的模块。结果表明,我们的PIDD-GaN提供高质量的重建MR图像,具有良好的边缘信息。单图像重建的时间低于5ms,符合加快处理的需求。
translated by 谷歌翻译
今天的数据往往散布数十亿资源受限的边缘设备,具有安全性和隐私约束。联合学习(FL)已成为在保持数据私有的同时学习全球模型的可行解决方案,但FL的模型复杂性被边缘节点的计算资源阻碍。在这项工作中,我们调查了一种新的范例来利用强大的服务器模型来突破FL中的模型容量。通过选择性地从多个教师客户和本身学习,服务器模型开发深入的知识,并将其知识传输回客户端,以恢复它们各自的性能。我们所提出的框架在服务器和客户端模型上实现了卓越的性能,并在统一的框架中提供了几个优势,包括异构客户端架构的灵活性,对各种图像分类任务的客户端和服务器之间的通信效率。
translated by 谷歌翻译
Surgery is the only viable treatment for cataract patients with visual acuity (VA) impairment. Clinically, to assess the necessity of cataract surgery, accurately predicting postoperative VA before surgery by analyzing multi-view optical coherence tomography (OCT) images is crucially needed. Unfortunately, due to complicated fundus conditions, determining postoperative VA remains difficult for medical experts. Deep learning methods for this problem were developed in recent years. Although effective, these methods still face several issues, such as not efficiently exploring potential relations between multi-view OCT images, neglecting the key role of clinical prior knowledge (e.g., preoperative VA value), and using only regression-based metrics which are lacking reference. In this paper, we propose a novel Cross-token Transformer Network (CTT-Net) for postoperative VA prediction by analyzing both the multi-view OCT images and preoperative VA. To effectively fuse multi-view features of OCT images, we develop cross-token attention that could restrict redundant/unnecessary attention flow. Further, we utilize the preoperative VA value to provide more information for postoperative VA prediction and facilitate fusion between views. Moreover, we design an auxiliary classification loss to improve model performance and assess VA recovery more sufficiently, avoiding the limitation by only using the regression metrics. To evaluate CTT-Net, we build a multi-view OCT image dataset collected from our collaborative hospital. A set of extensive experiments validate the effectiveness of our model compared to existing methods in various metrics. Code is available at: https://github.com/wjh892521292/Cataract OCT.
translated by 谷歌翻译